Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Leman Alkan and Sevil Irișli*

Department of Chemistry, Faculty of Science, University of Ege, 35100 Izmir, Turkey

Correspondence e-mail: irislisevil@hotmail.com

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$
R factor $=0.076$
$w R$ factor $=0.162$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

[$\operatorname{Bis}\left(\right.$ diphenylphosphino)methane- $\kappa^{2} P, P^{\prime}$]-[bis(diphenylthiophosphinyl)methane- $\kappa^{2} S, S^{\prime}$]platinum(II) bis(perchlorate) acetone solvate

The title complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2} \mathrm{~S}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ or $\left[\mathrm{Pt}(\mathrm{dppm})\left(\mathrm{dppmS}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, where dppmS_{2} is bis(diphenylthiophosphinyl)methane and dppm is bis(diphenylphosphino)methane, is the first example of a platinum(II) complex containing both dppm and dppmS S_{2} ligands. In the cation, the dppm ligand forms a non-planar fourmembered chelate ring, while the dppmS ${ }_{2}$ ligand forms a sixmembered chelate ring with twist-boat conformation.

Comment

There has been considerable interest in studying metal complexes with bidentate tertiary phosphine chalcogenides. Complexes have been studied mainly with the bidentate ligands $\mathrm{Ph}_{2} \mathrm{P}(E)\left(\mathrm{CH}_{2}\right)_{n} \mathrm{P}(E) \mathrm{Ph}_{2}(E=\mathrm{S}, \mathrm{O}$ and Se; $n=1,2$ and 3). The derivatives of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ exhibit monodentate S and bidentate or bridging S, S coordination of the neutral ligand, and bidentate S, S and C, S coordination of the monoanion. A large number of complexes of different metals have been reported for these chalcogenide ligands (Browning et al., 1992; Berry et al., 1992; Schumann, 1987; Bond et al., 1989). The lability of the chalcogen-metal bonds can give rise to dynamic processes and thus renders these ligands appropriate for catalytic applications (Alvarez et al., 1998). As a matter of fact, the complexes of bis(phosphine chalcogenide) ligands with 'soft' transition metals [rhodium(I), palladium(II) and ruthenium(II)] are found to be effective catalysts. For example, the complexes of rhodium are used for hydroformylation of alkenes and aldehydes (Choopani et al., 1995; Abu-Gnim \& Amer, 1994). The rhodium complex of the diphenylphosphino-substituted compound $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ was found to be an effective catalyst for carbonylation of methanol (Wegman et al., 1987). The palladium complex of the $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ ligand has been tested as catalyst in the alternating copolymerization of ethylene and carbon monoxide (Suranna et al., 2000).

There are only a limited number of studies in the literature related to mixed bis(chelate) complexes that contain bis(diphenylthiophosphinyl)methane $\left(\mathrm{dppmS}_{2}\right)$ and diphosphine ligands (İrişli \& Alkan, 2004; İrişli \& Yanar, 2005).

Received 7 November 2005 Accepted 21 November 2005 Online 26 November 2005

Figure 1
A perspective view of the cation in (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms, the solvent molecule and $\mathrm{ClO}_{4}{ }^{-}$ anions have been omitted for clarity.

We report here the crystal structure of the first example of a mixed bis(chelate) platinum(II) complex containing the dppmS_{2} and diphosphine neutral ligands, in which dppmS ${ }_{2}$ coordinates to the metal in a bidentate manner. The reaction of $\mathrm{PtCl}_{2} \mathrm{dppm}$ [dppm is bis(diphenylphosphino)methane] with dppmS 2 (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone in the presence of $\mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ gives $\left[\mathrm{Pt}\left(\mathrm{dppmS}_{2}\right)(\mathrm{dppm})\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$, (I). A perspective view of (I) is shown in Fig. 1. Selected geometric parameters are listed in Table 1.

In complex (I), Pt is coordinated by two P atoms of the dppm ligand and two S atom of the dppmS_{2} ligand in a distorted square-planar arrangement with trans $\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{S} 1$ [165.03 (8) ${ }^{\circ}$] and $\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{S} 2\left[166.33(8)^{\circ}\right]$. In the dppm chelate ring, the $\mathrm{Pt}-\mathrm{P}$ bond lengths are slightly different from each other $[\mathrm{Pt} 1-\mathrm{P} 1=2.251$ (2) \AA; $\mathrm{Pt} 1-\mathrm{P} 22.260(2) \AA$] . These values are shorter than that of $2.330 \AA$ found in $[\mathrm{Pt}(\mathrm{dppm})(\mathrm{dppp})] \mathrm{Cl}_{2}$ (Güneş et al., 2001). The shortening of the mean $\mathrm{Pt}-\mathrm{P}$ distance in (I) may be related to the different bidentate bite angles in the two complexes $\left\{72.51\right.$ (9) ${ }^{\circ}$ for (I) and $69.84(14)^{\circ}$ for $\left.[\mathrm{Pt}(\mathrm{dppm})(\mathrm{dppp})] \mathrm{Cl}_{2}\right\}$. Thus, in the relatively strain-free five-membered chelate ring of $\mathrm{PtCl}_{2} \mathrm{PPh}_{2} \mathrm{~N}(\mathrm{Ph}) \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Balakrishna et al., 1993), the $\mathrm{Pt}-\mathrm{P}$ bond length is $2.197 \AA$ (the $\mathrm{S}-\mathrm{Pt}-\mathrm{P}$ angle is 90.49°). The $\mathrm{PtP}_{2} \mathrm{C}$ four-membered chelate ring deviates from planarity, as indicated by the values of the torsion angles $\mathrm{C} 50-\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2 \quad\left[16.4(3)^{\circ}\right]$ and $\mathrm{C} 50-\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1$ [-16.5 (3) $\left.{ }^{\circ}\right]$.

The six-membered dppmS 2_{2} chelate ring ($\mathrm{Pt} 1 / \mathrm{S} 1 / \mathrm{P} 3 / \mathrm{C} 25 / \mathrm{P} 4 /$ S2) has a twist-boat conformation, with $\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{P} 3-\mathrm{C} 25$ and $\mathrm{Pt} 1-\mathrm{S} 2-\mathrm{P} 4-\mathrm{C} 25$ torsion angles of -69.2 (3) and $-79.3(3)^{\circ}$, respectively. The ring-puckering parameters for this ring $\left[\theta=86.22(19)^{\circ}\right.$ and $\Phi=275.5(3)^{\circ}$ (Cremer \& Pople, 1975)] support a twist-boat conformation. The $\mathrm{Pt}-\mathrm{S}$ distances are slightly different from each other $[\mathrm{Pt} 1-\mathrm{S} 1=2.394$ (2) \AA and $\mathrm{Pt} 1-\mathrm{S} 2=2.407$ (2) \AA A . These values are longer than that of $2.043 \AA$ observed in trans $-\left[\mathrm{PtCl}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{S})-\right.\right.$
$\left.\left.\mathrm{Bu}_{2}^{t}\right\}\right] \mathrm{ClO}_{4}$ (Berry et al., 1988), where the shortening may be ascribed to the trans influence of the Cl^{-}anion. The $\mathrm{Pt}-\mathrm{S}$ bond lengths are comparable to the value of $2.390 \AA$ found in $\left[\mathrm{PtCl}\left(\mathrm{PEt}_{3}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})\right\}_{2} \mathrm{CH}\right]$ (Browning et al., 1983), in which the dppmS_{2} ligand is present as an anion.

In the simple phosphorus compound $\mathrm{P}_{4} \mathrm{~S}_{10}$, the $\mathrm{P}-\mathrm{S}$ bond lengths are $2.097 \AA$ (single) and $1.908 \AA$ (double) (Berry et al., 1988). Thus, the observed P3-S1 and P4-S2 lengths [2.021 (3) \AA and 2.023 (3) \AA, respectively] are rather closer to single bond than double bond lengths.

In the crystal packing, some $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are present, involving H atoms of the phenyl rings and O atoms of the $\mathrm{ClO}_{4}{ }^{-}$anion and acetone solvent molecule (Table 2).

Experimental

The title complex was prepared according to the method given in the literature (İrişli \& Alkan, 2004). Recrystallization from acetone/ diethyl ether yielded colourless crystals suitable for X-ray analysis.

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2} \mathrm{~S}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2-}$.-	$\begin{aligned} & Z=4 \\ & D_{x}=1.564 \mathrm{Mg} \mathrm{~m}^{-3} \end{aligned}$
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=1284.92$	Cell parameters from 6151
Monoclinic, $P 2_{1} / n$	reflections
$a=20.888$ (2) A	$\theta=2.3-25.1^{\circ}$
$b=11.8633$ (14) \AA	$\mu=2.92 \mathrm{~mm}^{-1}$
$c=23.109$ (3) A	$T=297$ (2) K
$\beta=107.686$ (2) ${ }^{\circ}$	Block, colourless
$V=5455.7$ (11) \AA^{3}	$0.45 \times 0.39 \times 0.34 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	11149 independent reflections 10211 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.051$
Absorption correction: multi-scan	$\theta_{\text {max }}=26.4^{\circ}$
(SADABS; Bruker, 2001)	$h=-25 \rightarrow 26$
$T_{\text {min }}=0.300, T_{\text {max }}=0.371$	$k=-14 \rightarrow 14$
42618 measured reflections	$l=-28 \rightarrow 28$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0387 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$	+ 42.6288P]
$w R\left(F^{2}\right)=0.162$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.25$	$(\Delta / \sigma)_{\text {max }}=0.002$ 。
11149 reflections	$\Delta \rho_{\text {max }}=2.95 \mathrm{e}^{\AA^{-3}}$
642 parameters	$\Delta \rho_{\text {min }}=-2.96 \mathrm{e} \mathrm{A}^{-3}$
H -atom parameters constrained	

11149 independent reflections reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-25 \rightarrow 26$
$\rightarrow-18 \rightarrow 18$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0387 P)^{2}\right. \\
\quad+42.6288 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=2.95 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-2.96 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Pt} 1-\mathrm{P} 1$	$2.251(2)$	$\mathrm{Pt} 1-\mathrm{S} 2$	$2.407(2)$
$\mathrm{Pt} 1-\mathrm{P} 2$	$2.260(2)$	$\mathrm{P} 3-\mathrm{S} 1$	$2.021(3)$
$\mathrm{Pt} 1-\mathrm{S} 1$	$2.394(2)$	$\mathrm{P} 4-\mathrm{S} 2$	$2.023(3)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2$	$72.51(9)$	$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{S} 2$	$93.96(8)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{S} 1$	$165.03(8)$	$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{S} 2$	$166.33(8)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{S} 1$	$92.69(8)$	$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{S} 2$	$100.90(8)$
$\mathrm{C} 25-\mathrm{P} 3-\mathrm{S} 1-\mathrm{Pt} 1$	$-69.2(3)$	$\mathrm{C} 25-\mathrm{P} 4-\mathrm{S} 2-\mathrm{Pt} 1$	$-79.3(3)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1-\mathrm{C} 50$	$16.4(3)$	$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2-\mathrm{C} 50$	$-16.5(3)$

metal-organic papers

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O}^{\text {i }}$	0.93	2.59	3.34 (2)	137
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 7^{\text {ii }}$	0.93	2.49	3.26 (2)	140
C27-H27...O1 ${ }^{\text {iii }}$	0.93	2.45	3.376 (17)	176
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 9^{\text {iv }}$	0.93	2.41	3.27 (3)	153
C37-H37 . ${ }^{\text {O } 4}$	0.93	2.51	3.284 (18)	141
C43-H43..S2	0.93	2.85	3.335 (12)	114
$\mathrm{C} 50-\mathrm{H} 50 \mathrm{~B} \cdots \mathrm{O}^{\text {iii }}$	0.97	2.59	3.433 (18)	145
C53-H53A \cdots O2	0.96	2.57	3.21 (4)	124
C53-H53C $\cdots{ }^{\text {a }}$	0.96	2.50	3.22 (4)	131

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y+1, z+1$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$, (iv) $x, y+1, z$.

The maximum and minimum residual densities are located at $0.92 \AA$ from Pt1 and $1.23 \AA$ from S1, respectively. The H atoms were positioned geometrically and refined with a riding model, with $\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the University of Babeş Bolyai for their X-ray crystallography support and the Research Foundation of Ege University for funding (2002 FEN 010).

References

Abu-Gnim, C. \& Amer, I. (1994). J. Chem. Soc. Chem. Commun. 1, 115-117. Alvarez, B., Fernandez, E. J., Gimeno, M. C., Jones, P. G., Laguna, A. \& Lopez-de-Luzuriaga, J. M. (1998). Polyhedron, 17, 2029-2035.
Balakrishna, M. S., Klein, R., Uhlenbrock, S., Pinkerton, A. A. \& Cavell, R. G. (1993). Inorg. Chem. 32, 5676-5681.

Berry, D. E., Browning, J., Dixon, K. R. \& Hilts, R. W. (1988). Can. J. Chem. 66, 1272-1282.
Berry, D. E., Browning, J., Dixon, K. R., Hilts, R. W. \& Pidcock, A. (1992). Inorg. Chem. 31, 1479-1487.
Bond, A. M., Colton, R., Ebner, J. \& Ellis, S. R. (1989). Inorg. Chem. 28, 45094516.

Browning, J., Bushnell, G. W., Dixon, K. R. \& Hilts, R. W. (1992). J. Organomet. Chem. 434, 241-252.
Browning, J., Bushnell, G. W., Dixon, K. R. \& Pidcock, A. (1983). Inorg. Chem. 22, 2226-2228
Bruker (2001). SAINT (Version 6.26a), SMART (Version 5.625), SHELXTL (Version 6.12) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Choopani, S., Davis, R., Smith, K. \& Tebby, J. (1995). XIIIth International Conference on Phosphorus Chemistry, ICPC, p. 223, Jerusalem, Israel.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Güneş, B., Nergiz, E., Ide, S., Şahin, E. \& İrişli, S. (2001). Acta Cryst. C57, 1282-1284.
İrişli, S. \& Alkan, L. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 18171823.

İrişli, S. \& Yanar, S. (2005). Polyhedron. In the press. [Paper reference POLY 5853].
Schumann, H. (1987). J. Organomet. Chem. 320, 145-162.
Suranna, G. P., Mastrorilli, P., Nobile, C. F. \& Keim, W. (2000). Inorg. Chim. Acta, 305, 151-156.
Wegman, R. W., Abatjoglou, A. G. \& Harrison, A. M. (1987). J. Chem. Soc. Chem. Commun. 24, 1891-1892.

[^0]: (C) 2005 International Union of Crystallography

